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Abstract— Unmanned air vehicles (UAVs) have traditionally
been considered as “eyes in the sky”, that can move in
three dimensions and need to avoid any contact with
their environment. On the contrary, contact should not be
considered as a problem, but as an opportunity to expand
the range of UAVs applications. In this paper, we designed,
fabricated, and characterized a whisker sensor unit based
on MEMS barometers suitable for tactile localization on
UAVs, featuring lightweight, low stiffness, high sensitivity, a
broad sensing range, and scalability. Then, for the challenging
task of contact point localization, we propose a Recurrent
Multi-output Network (RMN) for predicting 3D contact
points under continuous contact conditions to address the
problems of non-linearity, hysteresis, and non-injective
mapping between signals and contact points by considering
time series. In addition, we propose an azimuth prediction
loss function which reduces the RMSE by 3.24◦ compared
to L1 loss. Finally, we conduct experiments on a linear stage
to validate the 3D contact point localization capability of the
proposed whisker system and model. The results show that
our localization can achieve excellent performance, with an
inference time of 1.4 ms and a mean error of only 9.18 mm in
Euclidean distance within 3D space, laying a robust foundation
for future implementation of tactile localization on UAVs. The
design files, dataset, and source code are available on: https:
//github.com/BioMorphic-Intelligence-Lab/
Whisker-3D-Localization.

I. INTRODUCTION

Whiskers, also known as vibrissae, are specialized sensory
organs of animals like rodents, cats, and seals [1]. They are
embedded in follicles and have a rich nerve supply, making
them highly sensitive to even slight changes in the surround-
ing environment. Drawing inspiration from nature, artificial
whiskers have been developed as lightweight, sensitive tactile
sensors for robots. They empower robots to interact with
objects non-intrusively [2], [3]; sense the airflow of sur-
roundings [4]–[6]; and self-vibration [7] through sensitive
tactile perception. Advanced technologies have propelled
artificial whiskers to perform complex tasks such as object
exploration [2], [8] and recognition [2], [9], [10], contact
point localization [3], [11], [12], airflow odometry [13], etc.

Whereas most work in the literature has focused on ground
robots, tactile interaction can also be beneficial to flying
robots. It can enhance UAVs’ sensory capabilities on ob-
stacle avoidance, localization, navigation, and even mapping
through physical interaction with the environment. These ad-
vanced functionalities can empower UAVs to autonomously
navigate through challenging environments via non-intrusive
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Fig. 1. A size comparison of a tiny UAV (92×92×29 mm, 27 g) with a
15 g maximum payload and the proposed whisker sensors (20× 18× 200
mm, 1.52 g).

tactile feedback. Whiskers for aerial-tactile applications re-
quire a different set of attributes than ground robots: 1) a
lightweight and compact design that has minimal impact
on UAV battery life; 2) low stiffness to enable gentle and
non-intrusive interaction with the environment thereby min-
imizing contact-induced forces; 3) a broad sensing coverage
to prevent airborne collisions; 4) high sensitivity to contact
in both non-intrusive and long-range situations; 5) high
resolution and rapid response time for real-time functioning;
and 6) robust contact point localization performance enables
accurate navigation decisions to be inferred.

To the best of our knowledge, only two studies have dis-
cussed whisker sensors for potential use in aerial applications
[4], [14]. However, these studies primarily focus on airflow
sensing rather than tactile sensing, and do not specifically
delve into the topic of contact point localization. Research
on contact point localization has primarily found imple-
mentation on ground robots. For example, [12] employed
3D magnetic sensors to gauge whisker deflections, while
[3] extended this approach by introducing the movement
of the whisker base over time to accurately determine the
precise 2D spatial location of the contact point based on
the Kalman Filter. Without relying on the time variation of
the moments, [11] and [15] designed tapered whiskers that
establish a unique correspondence between three forces and
three moments at the base of the whisker and other contact
points distributed along the length.

Our primary aim is to develop lightweight, compact,
and autonomously operating whiskers that can be easily
stacked into an array, and seamlessly integrated with UAVs
of varying configurations without compromising UAVs’ per-
formance, see Fig. 1. Incorporating low stiffness and an
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extended sensing area is key to enabling delicate aerial phys-
ical interaction with its surroundings, reducing the likelihood
of collisions. Commonly used whisker sensing mechanisms,
such as those utilizing magnetic [3], [4], [12] and optical
sensors [7], [15], [16], often need a substantial base area
for mounting and have limited sensitivity. Consequently,
these methods do not align well with our objectives. Uti-
lizing MEMS pressure sensors, known for their compact
size, lightweight, and high sensitivity, presents a promising
approach for our research. Previous studies [14] and [2]
successfully applied MEMS-based whisker sensors for tasks
such as airflow sensing and binary touch detection. Building
on previous research, we designed a MEMS-based whisker
sensor for tactile-based aerial applications on UAVs. Our
innovation of design features an optimized manufacturing
process, reduced weight, compact structure, enhanced sen-
sitivity, and the ability to scale seamlessly for extensive
array configurations. Moreover, it provides a larger sensing
coverage compared to prior approaches.

Research in whisker perception presents various chal-
lenges. Firstly, the utilization of soft material-based MEMS
whiskers inherently introduces limitations on precise per-
ception tasks, notably non-linearity and hysteresis in their
response [17], Fig. 4. Secondly, the nature of straight and
cylindrical whiskers brings about another issue – numerous
contact positions yield identical whisker deflections [18],
also illustrated in Fig. 4. Consequently, identical moments
generate identical signal outputs, exacerbating the complex-
ity of establishing distinct contact point positions based on
traditional physical models. To address these challenges, we
incorporate Recurrent Neural Networks (RNNs) into con-
tact point localization on whiskers, learning useful features
from streaming data. Additionally, we apply a task-specific
loss function to account for angle periodicity in azimuth
prediction. Ultimately, the 3D contact point output can be
efficiently trained using the Recurrent Multi-output Network
(RMN), which has fewer parameters, resulting in savings in
both training time and computing resources.

The contributions of this study are outlined below:
• We design, fabricate, and characterize a new MEMS-

based whisker sensor for contact point localization
suitable for aerial robots.

• We propose an RMN for precise 3D contact point
localization, addressing hysteresis and non-linearity in
response, non-injective mapping between signals and
contact points, and resource efficiency.

• We test the sensing sensitivity of our whisker sensor and
evaluate the 3D contact point localization performance
using a linear stage. The results demonstrate high-
precision localization performance with a mean error of
only 9.18 mm in Euclidean distance with an inference
time of 1.4 ms.

II. WHISKER DESIGN AND FABRICATION

A. Concept
In biological systems, whiskers lack sensors along their

length and rely on mechanoreceptors at their base, or fol-

Fig. 2. Whisker design and fabrication. A) Front and Back View of 4-
Layer PCB and barometer without package. B) Components of whisker
fabrication. The stencil is removed after molding the follicle structure. The
placement base serves solely for subsequent characterization and localization
experiments. C) Example picture of a whisker sensor.

licle, for detection [19], [20]. Upon contact, forces and
moments are transmitted, leading to follicle deformation that
mechanoreceptors convert into neural signals. Under quasi-
static and frictionless conditions, the whisker base experi-
ences three forces and three moments, effectively encompass-
ing all mechanical information that enters the follicle. The
importance of measuring moments for contact point detection
is highlighted [3], [11], [12], [21], driving the design of a
lightweight, compact, highly sensitive, and scalable sensor
capable of accurately capturing these mechanical signals
based on MEMS barometers in our work.

B. Design

As shown in Figure 2, our system consists of three parts:
1) a nitinol wire serving as a delicate whisker shaft for
subtle touch interactions; 2) a follicle structure containing
a plastic tube, UV resin, and three MEMS barometers; and
3) an integrated microcontroller PCB for autonomous signal
acquisition, processing, and communication. The PCB is
composed of four layers (Fig. 2A), with a total thickness
of 1.6 mm. Each PCB is purposely shaped like a hexagonal
honeycomb, featuring communication ports along each of its
sides, which enable flexible and seamless array expansion.
For the whisker shaft, we chose a 200 mm length nitinol wire
with a 0.4 mm diameter from options including 0.2, 0.4, 0.6,
and 0.8 mm diameters by a pre-experiment. This choice guar-
antees an ample sensing coverage and high sensitivity while
keeping the stiffness low. We skip the initial gel cast used
in [14]. Instead, we combine the barometer, plastic tube, and
whisker root into one unit called the follicle structure sensing
unit, making the fabrication process simpler and increasing
sensitivity. Contact with the whiskers induces deformation
of the follicle, exerting pressure on the mechanoreceptors.
The resultant forces and moments can be measured using a
MEMS barometer. The weight of the whisker unit is 1.52 g.



Fig. 3. The sensing pipeline in the whisker sensor system. The output of
neural network is 3D contact point prediction.

C. Fabrication

The fabrication process is illustrated in Fig. 2B. We
use a reflow oven to solder barometers in 10-pin LGA
packages. The metal package covering the MEMS device
is then carefully removed to expose the sensing element for
microforce detection, unlike [2]. Then, we fix the nitinol wire
in a straight manner and maneuver a hot air gun at a velocity
of around 5 mm/s at 520 C◦ for precise programming.
A stencil, 2 mm thick, is placed on the PCB to mold
the enclosure for the three barometers. A plastic tube, 5
mm in height with outer and inner diameters of 3 and 2
mm respectively, is positioned at the center of the three
barometers. The programmed nitinol wire is then carefully
lowered into the central axis of the plastic tube, ensuring
it aligns perpendicular to the PCB surface. Subsequently, a
syringe with a 1.2 mm needle is used to inject 1.5 ml of UV
resin along the plastic tube. The resin flows until a uniform
surface is formed within the mold, then cured under a UV
resin lamp. After that, we applied resin dots around the tube
to form a cone shape, ensuring a sturdier mounting for the
whisker and enhancing its sensitivity. Any excess resin could
cause the barometer to exceed its operational range due to
the high sensitivity of barometers.

D. System Integration and Signal Processing

The process of system integration is illustrated in Fig.
3. The chosen sensing unit for our whisker sensor is the
BMP390 (BOSCH). To achieve the control, data reading, and
initial data processing from the three barometers, we choose
an STM32F070F6 (32Kbytes flash memory, 48 MHz CPU)
microcontroller. The SPI bus facilitates serial communication
between the microcontroller and the barometers. This in-
volves reading sensor data sequentially by lowering the levels
of chip select pins in order. For the connection between the
microcontroller and the PC, we used the CH340-g (WCH),
a USB-TTL serial port converter. In this work, each set
included three pressure data points sampled at a rate of
115 Hz. To reduce the drift problem of ambient temperature
variations and partial strain recovery in the UV resin, we
access the register of BMP390 to apply the temperature
compensation coefficients to raw data. Additionally, a first-
order Butterworth band-pass IIR filter (0.03 to 5.75 Hz) was
applied, effectively eliminating low-frequency drift and high-
frequency noise (whisker ringing).

III. CONTACT POINT LOCALIZATION

A. Problem Definition

Whisker sensors, being soft sensors, are crafted from de-
formable materials to ensure gentle interaction with objects,
minimizing stiffness. However, this softness introduces chal-
lenges such as non-linearity and hysteresis in response [17].

Fig. 4. Challenges in utilizing whisker sensor for contact point localization.
(A) Nonlinear and hysteresis response in three-channel signals of the
whisker sensor. (B) The whisker causing deflection at contact point P1

will also register similar signal outputs at subsequent contact points, like
P2, P3, and P4. These points are defined in cylindrical coordinates.

Fig. 4A shows the 3 barometers signals’ existing hysteresis
and nonlinear characteristics of the proposed whisker sensor.

The second problem is depicted in Fig 4B. As discussed
in [11], the acquisition of three pressure signals from the
follicle structure allows a close correlation to be established
with two bending moments, Mx and My . While this can
calculate whisker deflection [12], it leads to a non-injective
mapping due to multiple contact locations P1, P2, P3, and
P4 producing the same deflection and sensor signals. Prior
studies have resorted to inferring contact points by assuming
the initial contact point and fusing the motion of the whisker
base over time [3], [21].

To address these challenges, we propose using the RMN
to extract features from time series data, which can accu-
rately predict 3D contact points without requiring additional
information. Moreover, we also introduce a loss function that
takes into account the periodic nature of the azimuth angle
(θ) for 3D contact point localization.

B. Architecture

The proposed model can simultaneously learn to estimate
3D contact points while addressing the issues of nonlinear
and hysteresis response and non-injective mapping. As il-
lustrated in Fig. 4B, the 3D contact points are represented
in a cylindrical coordinate system. Each point i, denoted as
Pi = {ri, hi, θi}, serves as the label for this network.

The RMN’s overall architecture is shown in Fig. 5. At time



Fig. 5. The architecture of the RMN.

point t, the collected data input to the model is represented
as Xt = {xt−n, . . . , xt}, where n is the length of the
time window for backtracking. The vector xi = {s1, s2, s3}
represents the input data at each time point i, containing three
preprocessed barometer signal values. The structure used
to capture temporal representation in this model comprises
a three-layer Long short-term memory (LSTM) [22]. The
detail of the LSTM cell is shown in Fig. 5. The output ht

of the LSTM structure is computed:

ft = σ (Wf · [ht−1, xt] + bf )

it = σ (Wi · [ht−1, xt] + bi)

ot = σ (Wo · [ht−1, xt] + bo)

C̃t = tanh (Wg · [ht−1, xt] + bg)

ht = ot ⊙ tanh (Ct)

(1)

where it, ft, and ot denote input gates, forget gates, and out-
put gates, respectively, and Wi, Wf , and Wo are parameter
matrices for each of the gates. The state of C̃t updates based
on the ft and it:

Ct = ft ⊙ Ct−1 + it ⊙ C̃t (2)

where Ct−1 and Ct are the cell states of the inputs and
outputs respectively, and ⊙ is element-wise multiplication.
Next, we feed ht into a Dense structure comprising four
fully connected layers to predict 3D localization points. The
parameters of the initial fully connected layer Ws are shared,
while the subsequent layers have independent parameters
W i

r ,W i
h,W i

θ where i ∈ {1, 2, 3}. This configuration allows
our network to more effectively fit the data. The total loss
function is presented:

Ltotal =
1

N

N∑
i

∥∥ri − rigt
∥∥
γ
+

1

N

N∑
i

∥∥hi − hi
gt

∥∥
γ
+ Ldir

(3)
where {ri,rigt} and {hi,hi

gt} represent the estimated and
ground truth values for radial distance (r) and height (h),
N is the total number of data samples, and Ldir is the loss
function for the directional regression task. The ∥ ∥γ is the
distance between the prediction and the ground truth value,
with the norm given by γ.

C. Loss Function

For the prediction of r and h, we can build a regression
task by forming a smooth, continuous and injective regres-
sion loss in Euclidean space,

∥∥ri − rigt
∥∥
γ

and
∥∥hi − hi

gt

∥∥
γ

.
After comparing with L2, we found that the L1 loss function
is more robust on our task, so we set γ to 1.

However, predicting θ poses a more significant chal-
lenge. First, directly regressing angles using L1 = ∥ ∥1
or L2 = ∥ ∥2 loss functions is a simple and effective
approach [23]. The advantage of this method lies in its
smooth and continuous loss functions, which are easy to
optimize. However, it cannot accurately represent angular
losses due to their periodic nature, which 2π and 0 are
the same but would give large errors. Taking inspiration
from quaternions, which offer a smooth and continuous
way to represent rotations [24], [25], we project ground
truth angles onto a unit circle constraint in two dimensions,
denoted as aigt = cos

(
θigt · π

180

)
and bigt = sin

(
θigt · π

180

)
.

This technique incorporates angle information within a two-
dimensional space, effectively addressing the periodicity
issue and potential optimization convergence to extreme
labels. However, this method lacks injectiveness, as different
∥(ai, bi)∥2 values under the same angle can result in varying
errors. Otherwise, we constrain it within a specific range
[0,rc], where rc is the regularization parameter set to 0.8
in this paper. This regularization approach partially restricts
the parameter space, slightly addressing the non-injectiveness
issue and improving gradients when the output approaches
the target. The loss function is as follows:

Ldir =
1

N

N∑
i=1

(∥∥ai − aigt
∥∥
2
+
∥∥bi − bigt

∥∥
2

)
(4)

where we constrain the ∥(ai, bi)∥2 ≤ rc.

D. Simultaneous Learning

In our model, we simultaneously learn three labels: r,
h, and θ. The model shares parameters except for the
last three fully connected layers. This approach conserves
computational resources to enable high-resolution real-time
localization. We enhance the performance of the model by
normalizing the prediction targets r and h to the range [0,1].
This normalization helps mitigate the issue of imbalanced
weights. The overall loss function can be expressed as:

Ltotal =
1

N

(
N∑
i=1

∥∥∥∥∥ri − rigt
σr

∥∥∥∥∥+
∥∥∥∥∥hi − hi

gt

σh

∥∥∥∥∥+ . . .

+
∥∥ai − aigt

∥∥
2
+
∥∥bi − bigt

∥∥
2

) (5)

where ∥(ai, bi)∥2 ≤ rc and σr and σh are normalization
factors to standardize rigt and hi

gt to the range [0,1].

IV. EXPERIMENTS

A. Experimental Setup

We tested the whisker system performance using a setup
that measured both force and position at various contact



Fig. 6. A) Experimental setup for contact force sensing and contact point localization. B) Comparing contact force to normalized pressure data in three
different design concepts. C) Isometric surface plots illustrating filtered pressure data as a function of r (0 to 100 mm) at various h.

Fig. 7. (A) Comparison of single outputs θ trained with L1 and Ldir against labels. The MAE and RMSE of L1 are 3.40 and 23.77 mm, and the MAE
and RMSE of Ldir are 3.21 and 20.53 mm. Ldir shows better robustness after considering periodicity. (B) The outputs and corresponding labels for r
overtime at h of 5, 8, 11, and 14 mm for all θ, which selects parts of all h to show the results more clearly.

points (Fig. 6A). A linear stage and 10N load cell (both
from Zwick Roell) with a slender rod were employed to
ensure the force acted purely vertically on the whisker shaft.
The setup included a 3D custom-printed placement base that
allowed adjustments to different θ, see Fig. 2B. The base
was attached to a plastic plate with a ruler for precise height
adjustments with respect to the whisker’s base.

In the first experiment, we compare the sensitivity of our
whisker sensor with that of two replica whiskers from the
literature. The two replica whiskers examined here have the
same design concept as those described in [2], [14]. The 3
whiskers were placed in identical orientations on the base,
and a force characterization test was conducted. Force was
applied by raising the linear stage at h = 50 mm, θ = 180◦,
and force signals were reading from the load cell.

In the second experiment, continuous r were applied to the
whisker shaft, ranging from 0 to 100 mm at a speed of 10
mm/s. Each trial encompassed loading and unloading phases,
with a 5-second hold at r ∈ {0, 100} mm respectively.
We repeated these steps at 10 mm intervals, covering the
range of h ∈ [50, 150] mm. We also conducted similar

procedures at different θ by rotating the internal components
of the placement base in 45-degree increments. The complete
dataset consists of 88 combinations (11 heights h, 8 angles
θ), each repeated 30 times. Consequently, the evaluated
sensing area encompasses a cylindrical sensing range defined
as {(r, θ, z) | 0 ≤ r ≤ 100mm, 0 ≤ θ ≤ 360◦, 50 ≤
z ≤ 150mm}, providing a solid basis for contact point
localization on UAVs.

B. Contact Force Sensing

We conducted experiments to measure contact force using
three distinct sensor designs, Fig. 6B. Both methods [12] and
our proposed approach exhibit a nearly linear relationship
between sensor data and applied force at the loading pres-
sure phase. However, method [2] struggles to detect forces
below 0.02 N, particularly given the stiffness of our nitinol
wire. As a result, within our own controlled manufacturing
environment, our design demonstrates superior sensitivity.
Additionally, we analyze the signal output of our whisker
under an angle θ of 180◦ at various h while exerting
increasing pressure with r (Fig. 6C). Notably, the filtered
pressure vs. r curve exhibits a steeper incline as the contact



TABLE I
3D POINT LOCALIZATION RESULTS WITH A MEAN EUCLIDEAN

DISTANCE ERROR OF 9.18 MM AND INFERENCE TIME OF 1.4 MS

Test Error
Radial Distance

r (mm)
Height
h (mm)

Azimuth angle
θ(◦)

MAE 5.00 5.37 4.06
RMSE 10.74 9.03 20.8

TABLE II
COMPARISON OF r PREDICTION RESULTS FOR DIFFERENT TIME SERIES

WITH θ = 0◦ AND h = 15 MM

Time Series 1 10 20 30 40 50
RMSE (mm) 14.13 11.84 10.39 9.19 8.02 8.18

point approaches the whisker base. This observation suggests
that by taking the time series into account, we may be able to
deduce the precise 2D position of the contact point. However,
it is worth noting that in cases where the contact point is
extremely close to the base, the r becomes too large, leading
to a lower pressure reading. This occurs when the whisker
loses contact with the perpendicular surface, resulting in a
shift from applying a direct force to a lateral force.

C. Implementation and Training

We structured the data into [40, 3] arrays with a sliding
window step of 1, where 40 represents the number of
time series data and 3 denotes 3 signal channels. Labels
were determined based on the value at the last time point,
maintaining a signal frequency of 115 Hz. The dataset was
then split into training, validation, and test sets. The training
set contains 6,068,046 frames, while both the validation and
test sets have 1,504,834 frames each. The validation set is
solely employed for hyperparameter selection, which can be
found on our GitHub repository. Notably, the training set was
randomly shuffled in each epoch. All models were trained on
an NVIDIA RTX 3050 GPU using the Adam optimizer with
a learning rate of 1×10−4. In the experiments for evaluating
the different angle loss functions, only the labels of θ were
used. For 3D contact point localization task, all labels were
trained simultaneously. All training spanned 30 epochs, with
the best-performing model across all epochs being saved.

D. Results on Contact Point Localization

We begin by assessing the effectiveness of the proposed
loss functions Ldir. The results generated by Ldir, with
Mean Absolute Error (MAE) and Root Mean Square Error
(RMSE) values of 3.21 and 20.53 mm respectively, exhibit
a smoother and more reliable progression when compared to
those produced by L1, which have MAE and RMSE values
of 3.40 and 23.77 mm. L1 tends to excessively bias the
angle optimization in one particular direction, leading to a
noticeable absence of output labels within the range of 0◦-
315◦, see Fig. 7A. In this context, Ldir yields a softer output,
directly contributing to a reduction in RMSE.

Next, we evaluated the RMN performance for the simul-
taneous estimation of 3D contact points. We illustrate the

predicted and ground truth of r overtime at 5, 8, 11, 14 mm
h of all of the θ out of all results, Fig 7B. This evaluation
showcases that our architecture can address whisker’s non-
linearity and hysteresis challenges. Moreover, this figure
provides clear evidence of the performance we achieve in
distinguishing different contact point outputs under the same
whisker deflection. Each contact point can be predicted
precisely. This reaffirms the effectiveness of our approach
based on the RNN, which exclusively relies on the input
from the sensor signals. Table I presents the 3D contact point
localization results, which exhibit impressive performance,
with MAE of 5.00 mm, 5.37 mm, and 4.06 ◦ for r, h, and θ
respectively. Additionally, the RMSEs are measured at 10.79
mm, 9.03 mm, and 20.8 ◦ for the respective dimensions. The
mean error of the Euclidean distance in three-dimensional
space was calculated to be only 9.18 mm. Our model
achieves an inference time of 1.4 ms, perfectly aligning with
the 115 Hz signal sampling frequency requirement.

In addition, we further investigated the impact of time
series data on model performance. This result pertains to the
prediction of r using exclusively the data with an θ of 0◦

and a h of 15 mm over various r, see Table II. When RNN
is not utilized (time series set to 1), the model encounters
difficulties in handling the non-linearity and hysteresis chal-
lenges posed by the whisker sensor. Setting the time series to
40 represents our initial choice, striking a balance between
computational resources and model performance.

V. CONCLUSIONS

In this work, we tried to address the significant challenge
of integrating a whisker sensor onto a micro air vehicle
(UAV) for enhanced environmental interaction. We have suc-
cessfully designed, fabricated, and characterized a MEMS-
based whisker sensor unit tailored to UAV requirements.
This sensor unit stands out for its lightweight, low stiffness,
high sensitivity, broad sensing range, scalability, and rapid
response. To achieve precise tactile localization on a UAV,
we introduced an RMN to tackle the inherent non-linearity,
hysteresis, and non-injective mapping challenges posed by
soft whiskers. Furthermore, we incorporated an azimuth
prediction loss function to effectively consider the periodic
nature of angles, enhancing the robustness of the model. Our
experiments, conducted on a linear platform, demonstrate
exceptional performance in 3D contact point localization
within a broad perceptual coverage of {(r, θ, z) | 0 ≤ r ≤
100mm, 0 ≤ θ ≤ 360◦, 50 ≤ z ≤ 150mm}. The results
demonstrate high precision localization performance with a
mean error of only 9.18 mm in Euclidean distance with an
inference time of 1.4 ms

To conclude, our study lays a robust foundation for ad-
vancing aerial tactile localization, opening up exciting possi-
bilities for enhanced interaction with complex environments.

ACKNOWLEDGMENT

The authors would like to thank Suryansh Sharma and Erik
van der Horst for assisting with the PCB debugging phase.



REFERENCES

[1] A. S. Ahl, “The role of vibrissae in behavior: a status review,”
Veterinary research communications, vol. 10, no. 1, pp. 245–268,
1986.

[2] C. Xiao, S. Xu, W. Wu, and J. Wachs, “Active multiobject exploration
and recognition via tactile whiskers,” IEEE Transactions on Robotics,
vol. 38, no. 6, pp. 3479–3497, 2022.

[3] M. A. Lin, E. Reyes, J. Bohg, and M. R. Cutkosky, “Whisker-inspired
tactile sensing for contact localization on robot manipulators,” in 2022
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2022, pp. 7817–7824.

[4] S. Kim, R. Kubicek, A. Paris, A. Tagliabue, J. P. How, and S. Berg-
breiter, “A whisker-inspired fin sensor for multi-directional airflow
sensing,” in 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2020, pp. 1330–1337.

[5] A. Tagliabue, A. Paris, S. Kim, R. Kubicek, S. Bergbreiter, and J. P.
How, “Touch the wind: Simultaneous airflow, drag and interaction
sensing on a multirotor,” in 2020 IEEE/RSJ international conference
on intelligent robots and systems (IROS). IEEE, 2020, pp. 1645–1652.

[6] T. Kim, H.-S. Shin, K.-H. Nam, S. Bergbreiter, and Y.-L. Park, “Soft
airflow sensors with artificial hair structures and printed ionogel chan-
nels for wind gust detection for small uncrewed vehicles,” IEEE/ASME
Transactions on Mechatronics, 2023.

[7] T. A. Kent, S. Kim, G. Kornilowicz, W. Yuan, M. J. Hartmann, and
S. Bergbreiter, “Whisksight: A reconfigurable, vision-based, optical
whisker sensing array for simultaneous contact, airflow, and inertia
stimulus detection,” IEEE Robotics and Automation Letters, vol. 6,
no. 2, pp. 3357–3364, 2021.

[8] M. J. Pearson and M. Salman, “Active whisker placement and explo-
ration for rapid object recognition,” in 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2019,
pp. 672–677.

[9] C. W. Fox, B. Mitchinson, M. J. Pearson, A. G. Pipe, and T. J. Prescott,
“Contact type dependency of texture classification in a whiskered
mobile robot,” Autonomous Robots, vol. 26, pp. 223–239, 2009.

[10] N. F. Lepora, M. Evans, C. W. Fox, M. E. Diamond, K. Gurney, and
T. J. Prescott, “Naive bayes texture classification applied to whisker
data from a moving robot,” in The 2010 International Joint Conference
on Neural Networks (IJCNN). IEEE, 2010, pp. 1–8.

[11] H. Emnett, M. Graff, and M. Hartmann, “A novel whisker sensor used
for 3d contact point determination and contour extraction,” in Robotics
Science and Systems, vol. 14, no. June 2018, 2018.

[12] S. Kim, C. Velez, D. K. Patel, and S. Bergbreiter, “A magnetically
transduced whisker for angular displacement and moment sensing,”
in 2019 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2019, pp. 665–671.

[13] A. Tagliabue and J. P. How, “Airflow-inertial odometry for resilient
state estimation on multirotors,” in 2021 IEEE International Confer-

ence on Robotics and Automation (ICRA). IEEE, 2021, pp. 5736–
5743.

[14] W. Deer and P. E. Pounds, “Lightweight whiskers for contact, pre-
contact, and fluid velocity sensing,” IEEE Robotics and Automation
Letters, vol. 4, no. 2, pp. 1978–1984, 2019.

[15] T. A. Kent, H. Emnett, M. Babaei, M. J. Hartmann, and S. Bergbreiter,
“Identifying contact distance uncertainty in whisker sensing with
tapered, flexible whiskers,” in 2023 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2023, pp. 607–613.

[16] N. F. Lepora, M. Pearson, and L. Cramphorn, “Tacwhiskers:
Biomimetic optical tactile whiskered robots,” in 2018 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS). IEEE,
2018, pp. 7628–7634.

[17] S. Han, T. Kim, D. Kim, Y.-L. Park, and S. Jo, “Use of deep learning
for characterization of microfluidic soft sensors,” IEEE Robotics and
Automation Letters, vol. 3, no. 2, pp. 873–880, 2018.

[18] L. A. Huet, J. W. Rudnicki, and M. J. Hartmann, “Tactile sensing
with whiskers of various shapes: Determining the three-dimensional
location of object contact based on mechanical signals at the whisker
base,” Soft robotics, vol. 4, no. 2, pp. 88–102, 2017.

[19] M. Szwed, K. Bagdasarian, B. Blumenfeld, O. Barak, D. Derdikman,
and E. Ahissar, “Responses of trigeminal ganglion neurons to the
radial distance of contact during active vibrissal touch,” Journal of
neurophysiology, vol. 95, no. 2, pp. 791–802, 2006.

[20] S. Ebara, K. Kumamoto, T. Matsuura, J. E. Mazurkiewicz, and F. L.
Rice, “Similarities and differences in the innervation of mystacial
vibrissal follicle–sinus complexes in the rat and cat: a confocal
microscopic study,” Journal of Comparative Neurology, vol. 449,
no. 2, pp. 103–119, 2002.

[21] J. H. Solomon and M. J. Hartmann, “Extracting object contours
with the sweep of a robotic whisker using torque information,” The
International Journal of Robotics Research, vol. 29, no. 9, pp. 1233–
1245, 2010.

[22] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[23] S. Wang, R. Clark, H. Wen, and N. Trigoni, “Deepvo: Towards
end-to-end visual odometry with deep recurrent convolutional neural
networks,” in 2017 IEEE international conference on robotics and
automation (ICRA). IEEE, 2017, pp. 2043–2050.

[24] A. Kendall and R. Cipolla, “Geometric loss functions for camera pose
regression with deep learning,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2017, pp. 5974–5983.

[25] A. Kendall, M. Grimes, and R. Cipolla, “Posenet: A convolutional
network for real-time 6-dof camera relocalization,” in Proceedings
of the IEEE international conference on computer vision, 2015, pp.
2938–2946.


	INTRODUCTION
	Whisker design and fabrication
	Concept
	Design
	Fabrication
	System Integration and Signal Processing

	Contact Point Localization
	Problem Definition
	Architecture
	Loss Function
	Simultaneous Learning

	Experiments
	Experimental Setup
	Contact Force Sensing
	Implementation and Training
	Results on Contact Point Localization

	CONCLUSIONS
	References

